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STEADY-STATE PERTURBATIONS IN A LIQUID CONTAINING GAS BUBBLES 
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and S. A. Rybak 

UDC 532.529.5 

The problem of wave propagation in a liquid with gas bubbles, which is an example of a 
nonlinear dispersive medium, is usually treated in the approximation of weak nonlinearity 
and dispersion [i, 2], and a solution has been successfully obtained only in some special 
cases corresponding to a strong variation of the bubble radius [3]. In contrast to this, it 
is shown in this paper that a wider class of solutions is successfully found for stationary 
waves whicheorrespond to highly nonlinear pulsations of the bubbles. At the same time, pe- 
riodic solutions appear along with solutions of the soliton type, which correspond to the 
situation in which nonlinear and dispersive effects just compensate each other. 

One-dimensional acoustic waves in a bubble medium can be described by a system of linear 
acoustic equations which take account of the presence of gas bubbles: 

Op/Ot -i- poOvlOx = O; OvlOt -}- (ilpo)aplOx = O; P/Po ----- [ ( i  - -  z)/poc~] p -- nV (1 )  

and by the Rayleigh nonlinear equation for oscillations of a gas bubble 

RdeR/dt ~ + (3/2)(dR/dt)~ = (Po/Oo)l(Ro/R)~v-- 1] - -P /9 , .  (2) 

Since p = p(t, x), then R = R(t, x) and dR/dt = ~R/~t on the condition that one can neglect 
the convective nonlinear terms. Here Po, Po, and co are the equilibrium values of the den- 
sity, pressure, and speed of sound, respectively, in a liquid without bubbles; Ro is the 
equilibrium bubble radius; R is its instantaneous radius; y is the adiabatic exponent for 
the gas in the bubble; n is the number of bubbles per unit volume; z is the bubble concentra- 
tion; and p, p, v, and V are the variations in the density, pressure, speed of the liquid's 
particles, and the bubble volume, respectively. 

If one introduces the equilibrium bubble volume Vo = (4/3)wRo3[z = nVo, Vo +V = (4/3)~R 3] 
the eigenfrequency of the oscillations of the bubble ~o 2 = 3ypo/poRo 2, and also the dimen- 
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Y 
X - -  P/poc~, Y - -  , x = coot, 

Vo 

= ~ x,  P - =  PIP0, v = V/Co; 
Co 

then the system of equations (I) and (2) is brought to the dimensionless form 

a-~/& 4 a-~/a~ = o, a ~ &  + ax/a~ 0 ,  f~ = (t - -  z ) x  - -  zY,  

a"-Y/as = (1/6)(! -F Y)-~(ar/&)"- -;- (1 -I- Y)'/:~{[(! 4- y ) - v  - -  I 1/V - -  6X}. 
(3) 

Here the parameter 6 = poco2/ypo = poco2/PBCB 2 m i, where c B and PB are the equilibrium 
speed of sound and the density of the gas in the bubble. 

We will further consider only steady-state solutions of the system (3) of the form Y = 
Y(n), where q = ~ -- CT and c is some constant equal to the speed (in units of Co) of movement 
of the unknown perturbation in the medium. For steady-state solutions, the coupling equations 

x = x(~) - Xo + s t ,  ~ = ,(n) = ~ + (s/~)r,  

= ~ q )  = ( |  - -  z ) X o  -; ( S / c ~ ) Y ,  ( 4 )  

w h e r e  S = z c 2 / [ ( 1  --  z ) c  = - -  1 ] ,  f o l l o w  f r o m  t h e  s y s t e m  ( 3 ) ;  t h e  c o n s t a n t s  Xo a n d  v o  c a n  b e  s e t  
t o  z e r o ,  t h e r e b y  h a v i n g  i n c l u d e d  t h e m  i n  t h e  e q u i l i b r i u m  v a l u e s  p o ,  p o ,  a n d  V o .  I n  t h i s  c a s e ,  
t h e  l a s t  e q u a t i o n  o f  ( 3 )  i s  r e d u c e d  t o  a n  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  w i t h  r e s p e c t  t o  Y 

d"-Y/'dq"- - ( I ; (1 ) ( I  :- Y ) - ' ( d ) ' / d q ) " -  i -  [ ( t  -i- Y)~/3/c ' :]{[( l  -I- y ) - v  - -  t 1/? - -  D Y } ,  (5) 

where 

9 o o . ,) 
c 2 c T - c : ,  el" c ' - - c ~  

. . . . . .  ' - = D  t D =  " D $ 6  -=7 ., - -  q ~ -  q ' ~ , 
- C 2 - -  C~ 

c~ -.: ( l  - z ) - ' ,  ~ __: ( i  - : + : 6 ) - ' .  

= follows from the conditions z6 > 0 and z < 1 We note that c= 2 < c i 

The bounded solutions of Eq. (5) for some fixed value of the speed c are cited for per- 
turbations propagating in a liquid without change of shape. One should bear in mind that 
Eq. (5) is derived from the linear acoustic equations (i) (only the nonlinearity of the oscil- 
lations of the bubbles was taken into account). Consequently, the condition of the smallness 
of the Mach acoustic number M = max[F[/c << I, should be fulfilled, which, along with (4), 
gives a constraint on the maximum value of Y" 

zc 2 max I r [ 
ic=_ c~ l << :1.. (6) 

In the linear approximation the solution of Eq. (5) is of the form 

Y = A e  i• = A e  i(• • = D/e"-, / = c• 

The requirement of the boundedness of Y reduces to the condition~ = 70, whence we obtain two 
= c 2 c 2 The dispersion equa- regions of permissible values of the speed c: c 2 > ci and < = . 

t i o n  o f  l i n e a r  a c o u s t i c  w a v e s  i n  a b u b b l e  m e d i u m  i s  w r i t t e n  i n  t h e  f o r m  f = ] f D - = - ~  . c ~ _ q  z 

The corresponding dispersion curves in the coordinates c and f are shown in Fig. i. It is 
obvious that the speed ci corresponds to the speed of high-frequency waves f ~ l(m ~ ~o); 
in this connection, the oscillations of the bubbles are not expressed in the propagation of 
waves [the term zY in the third equation of (3) is omitted]. The presence of bubbles is ex- 
hibited only in the variation of the equilibrium of the liquid Peff = po(l -- z). The speed c2 
corresponds to low-frequency waves f << i. 
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In order to find a bounded solution of the nonlinear Eq. (5), let us multiply the latter 
by 2(1 + Y)-i/adY/d~ to obtain 

d y ) - - t / 3 { d r ~ 2  2 Dg (i + Y)--v-- i 
d-'~ (1 4- t-d~ ) 4- c---r,. - -  ? dy --= O, 

0 

whence the first integral of Eq. (5) follows directly: 

(t + Y)- ' /3(dY/dt l )  "z + [Y-U(Y) ---- p~-H, (7) 

where 

= W ( i  -J- ?) /3c'~;  (~ = ( i / 2 ) ? ( ~ ,  - -  I ) D ;  

U(Y)  = [6/?(?" -- 1)1[(t -~ r ) - (v- ' )  -- i -~ (? -- I)Y 4- (zY2l. 

Equation (7) has the meaning of an energy conservation law. Actually, 
sional variables, we obtain 

transforming to dimen- 

( d Y ~  2 18(~ 
(i + y)- , /3 \27~1 -- C2Vopo Tk' 

where T k = 0o (Vo + V)(dR/dt) 2 is the kinetic energy of an individual bubble in the liquid. 
Then the quantity U(Y) is proportional to the potential energy, and the constant H is propor- 
tional to the conserved total energy of the bubble. In the quadratic approximation 

U(Y)  = y3 _ [3/0 ?)]DY e, IYI << i.  

The g e n e r a l  s o l u t i o n  o f  Eq. (7) i s  w r i t t e n  i n  t h e  i m p l i c i t  fo rm 

(8) 

Y 

~ 4- 0=: _+ I (1 ,z- y ) - q 6 ( H  - -  U(y)-~/edy.  

Here Y can take the values Y,~Y~Y2, where YI and Y2 are two finite roots of the function 
H-- U(Y), between which H>U(Y). The solution Y = Y(Bq + | is periodic (a soliton is ob- 
tained in the limiting case of a multiple root YI or Y2)with period T, which is determined 

by the expression 

r~  

2 l T = ~ ,, (t  4- Y)-~/~ (H- -U(Y) )  -l/2dy" 

Y~ 

We will investigate the permissible values of the total energy H in the case of a fixed 
value of the speed c. For this it is necessary to consider three possible intervals of vari- 

ation of the Speed c: 
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the corresponding curves 1-3 of the variation of the potential field U(Y) are given in Fig.2; 
it is obvious that the propagation of a stationary wave in a bubble medium is analogous to 
the oscillations of a particle in the potential field U(Y) with energy H [4]. In this s 
it is necessary for the existence of bounded solutions Y(q) that the particle be located in 
a potential well, i.e., the total energy of the particle should lie between the maximum and 
minimum values of the potential energy. Consequently, we obtain for the three possible in- 
tervals of variation of the speed c three regions of permissible values of the total energy 
of a bubble H, respectively: 0~H~Um; Um' ~ H~0; and H > 0. At the same time, the val- 
ues Ym and Ym', and also U m and Um' , are determined by the following relations: 

(1 - ; - Y ~ ) - ~  = 1 + [ 2 ~ / ( ? -  ~ ) l Y ~ ,  U ~  = U(Y~), 

and Ym and Ym' correspond to a nonzero root of the first equation. 

Let us qualitatively consider the types of solutions in each interval of variation of 
the speed c. 

i. Let c2~c2 2. The phase trajectories of Eq. (7) are presented in Fig. 3a. Curve 1 
(H = U m) is the limiting curve and corresponds to a soliton (Fig. 3b). During the variation of 
the total bubble energy H from U m to 0, the phase trajectories are closed (periodic solution, 
Fig. 3c) and shrink to the center at point (0,0). Upon the variation of the speed c from 
zero to c2, the point Ym tends to zero, and all the phase trajectories shrink to the point 
(0,0). 

Let us derive the constraints on the region of variation of the parameters c 2 and H, 
which are related to the linearity of the acoustic equations [condition (6)]. Since YI ~Y~ 
Y2 and [Yz[ <i, max[Y I ~max{l, [Y2[}. If IY[=~l, then z + (I -- z)/~ << 1 follows from 
condition (6), and the latter inequality is always satisfied, because z << 1 and d ~ I. When 
[Y2[ > 1 and with the relation Y2 < Ym and the estimate Ym < -- (Y -- I)/2~ taken into account, 
we obtain 

c ~ >> t / 7 6 .  (9) 

Due to the fact that y~ >> i, condition (9) does not allow considering waves propagating at 
low speeds. However, the condition (9) is valid only for a soliton and for the solutions 
whose phase trajectories are close to the limiting curve (curve I, Fig. 3a), because Yz is of 
the same order of magnitude as Ym is for precisely these solutions. If one considers periodic 
solutions for which Y2 ~ Ym, then when c 2 < i/~ we obtain the fact that Y2 = (i/6)y(y + I)H, 
and its substitution into condition (6) leads to a constraint on the total energy H: 

<< 6/vd § -~)z. 

The case of small perturbations [Y[ << 1 is analyzed with the help of the expansion of 
the function H -- U(Y) into a series out to terms of the third order inclusively of (8). In 
this connection we derive that Ym = [2/(1 + y)]D and U m = Ym3/2. In particular, for a soli- 
ton the roots of the function H -- U(Y) are expressed in the form Yz = -- Ym/2, Y2 = Ym, and 
the form of the soliton is 
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Y(~I) = Y , ~ -  P/eh(V-T(~/2)~I). 

The amplitude of the soliton P and its width A are determined by the expressions 

o 2 

P "3 D ---- ~ (c--!~25"--%. - ,-F~' ,+~,/,../ ~ _ ~ '  

2 1/~-1_ - -  ( c / c , )  ~ 

A - -  ~ -V ' I~  r (~dc)  " ~ -  I_ " 

2 2 2. Let c2 ~ ca~cx ; then Um'~ H~0. In this case, it is possible to reduce the 
problem to the one considered for the previous type, using the following substitution: 

Y - -  Ym . ~ c~ . 

v - , +  r---7' ~ =( '  + r; . )  '~+' + [ * - 0  + y;,)"+q(~'-/~,> : '  

V" = (1 + r,.)-(~+~/~>13=; a = ( t i  - u: , )O + Y : ) ~ - ' .  

At this point a transition occurs to a new equilibrium state of the medium: 

Vo :- Vo ( t  + Y~), Po =: Po + Poc~SY~, 

~o-~0(t  + ~'• r : ) .  

3. Let c 2 > cx =, then H > 0. The phase trajectories of Eq. (7) for some fixed value 
of the speed c are illustrated in Fig. 4. The point (0,0) is the center. The curves more 
distant from the center (increase of the wave amplitude) correspond to larger values of the 
total energy H. As the speed c increases, the phase trajectories become less elongated in 
the directlon of the OY axis. Since all the phase trajectories are closed, only periodic 
solutions are possible which agree qualitatively with those illustrated in Fig. 3c. The so- 
liton, which propagates with speed c > cx, does not occur. The latter is natural, because 
when c > c~, the high-frequency harmonics propagate with practically the same speed, and 
their nonlinear formation cannot be compensated by dephasing due to dispersion as occurred 

in the region of strong dispersion (c < ca). 

We have the following estimate for th~ roots YI and Y= of the function H -- U(Y): 

- - V [ ( i  .-1- ?) /3IH/D < Y1 < O, 0 <Y2  < V[( 't -i- y)I31H/D. 

At the same time, we obtain from the condition (6) a constraint on the range of variation of 
the parameters c and H produced by the linearity of the acoustic equations 

(I0) 

Condition (i0) shows that the total energy and along with it the wave amplitude should be 
small for speeds c close to the speed ci of high-frequency linear waves. One should expect 
this, since as c + cx, linear waves are propagated without dispersion and the nonlinearity 
of the acoustic waves is manifested more strongly. 

If we restrict ourselves to small values of the quantity IYI and use the approximate 
expression (8) to find the roots YI and Y= of the function H -- U(Y), then it is possible to 
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produce nonlinear distortion of a small-amplitude harmonic wave. However, one should take 
special care here, because the formal use of Eq. (8) (quadratic approximation)without taking 
the smallness of IYI into account can result in significant distortions of the solution. For 
example, a false soliton is exhibited when H=3[D/(I + y)]3, but in thiscaseY2 =2D/(I+Y)~ 
(2/3)(ci/c2) 2 ~ i and Eq. (8) becomes invalid. In conclusion, explaining the nature of,he 
solutions obtained, we note that the excess pressure p on the right-hand side of Eq. (2) can 
be expressed with the help of the equation of state in the formof the equationp =ponVc2co2/ 
[(I - z)c 2 - I], which results from Eq. (i) for the case of a stationary wave. As is evi- 
dent, the sign of p/V varies as a function of the relation between c 2 and ci =, and when c 2 > 
c~ =, the excess pressure p increases as V increases, while when c 2 < cI 2, a negative valueof 
p (the pressure decreases) corresponds to an increase in V. The first case corresponds to 
pulsations of the bubble at frequencies higher than resonance, when the bubble represents a 
massive impedance and the liquid is elastic; at the same time, an increase in the volume of 
the bubble is accompanied by compression of the elastic element (a pressure increase). In the 

2 opposite case, when c 2 < c~ , the bubble is the elastic element, and its increase implies a 
dilatation of the elastic element (i.e., a pressure decrease). We note that the elasticity 
of the gas in the bubble, which is described by the first term on the right-hand side of 
Eq. (2), always opposes the expansion, i.e., this term is always negative upon an increase 

2 in V. Therefore, when c 2 < c~ in the case (--p) > 0, the terms on the right-hand side of 
the equation have unlike signs and compensation of them is possible, which corresponds to the 
formation of a soliton. 
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ASYMPTOTIC ANALYSIS OF THE PROBLEM OF IGNITION OF REACTIVE MATERIAL 

BY A HEATED SURFACE 

R. S. Burkina and V. N. Vilyunov UDC 536.46 

INTRODUCTION 

Due to the Arrhenius dependence of the rate of a chemical reaction on temperature in the 
statement of many problems of macrokinetics, several relaxation lengths (usually two) are 
present whose ratio forms a small parameter (for example, the ratio of the chemical reaction 
and heating zones). Problems of this type pertain to special perturbation problems, for whose 
solution the method of spliced asymptotic expansions (SAE) is most suitable. The solution 
of a number of steady-state problems of slow burning and detonation (see [!] and the bibliog- 
raphy in it) has been found with the help of SAE. The attempt to apply SAE to problems of 
macrokinetics formulated within the framework of partial differential equations* is still 
very limited [1-3]. Upper and lower limits are found in this paper for the heating time in 

*V. S. Berman, "Some problems in the theory of the propagation of a zone with exothermic 
chemical reactions in gaseous and condensed media." Dissertation in Competition for the Sci- 
entific degree of Candidate of Physico-Mathematical Sciences, Institute of the Problems of 
Mechanics, Academy of Sciences of the USSR, Moscow (1974). 
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